

Description

- MAST is a one dimensional code that applies the multi-field approach combined with a high spatial resolution to simulate gas-liquid-liquid flow and flow pattern transitions in hydrocarbon transportation lines
- The unsteady description of the slug flow allows the code to compute slug length distribution and frequency at any position along a pipeline, with no closure equations required for the slug bubble velocity and void fraction

Capabilities

- Fully three phase flow model (oil/gas/water) including oil/water flow map to describe liquid/liquid systems
- Single branch well/pipeline model including external mass sources (to simulate incoming branches)
- Full network simulation capabilities
- Valves models with PID controllers
- Oil/gas reservoir simulation
- Multiphase Pump and Separator models available for process system simulation
- Chemical Inhibitors /particle tracking model

Modules

At present the following modules are available:

- Valve/Flow Conditioner/Separator
- Multi/Single Pigging
- Complex Fluids
- Multiphase Pump
- Network
- Tracers/Inhibitors

Closure equations

MAST solver that allows to:

- adopt a set of default closure equations;
- select closures from a library;
- introduce customized closures;

Support laboratory tests

Specific research activities (SESAME for Stratified Annular Flow, HOP for Highly Viscous Liquids) have been carried out to improve MAST capabilities in selected sectors

Current development

Two projects are under way at TEASistemi to improve MAST performances:

- PowerMAST, to parallelize MAST for distributed computing implementation
- MAST VALIDATION, to characterize code accuracy against field data

ENERGY AND ENVIRONMENT TECHNOLOGIES

experience knowledge solutions

CONTACTS

info@tea-group.com +39 050 6396101

